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STABILITY OF CONTROLLABLE ELASTIC DISTRIBUTED SYSTEMSs 

E-M. POTAPENKO 

Simple criteria for the observability of elastic systems are 
established. Theorems are proved that enable one to determine whether 
distributed controllable systems, whether linear or non-linear, are 
asymptotically stable, by examining a model not involving elasticity. 
The results are obtained without truncation of elastic modes. 

Elasticity in the structure of controlled objects may modify the 
characteristics of the system to such a degree that a control system 
developed without allowing for elasticity, or allowing for only a few 
modes of elastic vibration, does not guarantee stability of the real 
physical system, since it may lead to instability in the omitted modes. 
A further complication is the approximate nature of dynamical schemes 
for real controlled objects; the only more or less reliable parameters 
are those relating to the lowest elastic modes. In addition, the output 
characteristics of the various sensors and actuating elements are 
usually non-linear and governed by differential equations. Hence the 
importance of developing methods for the synthesis and analysis of non- 
linear control systems for objects with inaccurately specified 
characteristics, in such a way as to guarantee asymptotic stability of 
the state of equilibrium of the full system without truncation of 
elastic vibratory modes. This problem will be solved in the present 
paper. 

I. Equc&ons of motion. Consider a rigid body E, of mass .m,, attached to which are 
elastic elements E,,E,,...,E,v of masses mi,~,...,mN, respectively. The space S 
occupied by the entire system and the mass m of the entire system are defined by 

.S = E. + Jz+ . . . +E~~m=m,i-m,=m,-l-ml +m,+...i-mN 

It is assumed that the elastic elements are rigidly attached and experience small 
elastic deformations relative to their undeformed states at every point (other than the 
attachment points). 

Let Oxyz be an orthogonal reference frame attached to the rigid body. Let v,, and ie 
be, respectively, the linear displacement vector of 0 and the small angle through which the 
body rotates about 0 relative to the inertial frame; let r be the vector of any point of 
the mechanical system in the nominal (undeformed) state relative to the frame or!&, and 
,u (r) the elastic deformation of the system at the point r. Then the displacement of any 
point of the system relative to the inertial frame is given by 

u (r) = u, - r,8 + u (r) (1.1) 

written in matrix notation in terms of the projections of vectors on the axes of the frame 
0x$& Here and below a, is a skew-symmetric matrix whose elements are the projections of the 
vectors a, and a,b is the matrix representation of the vector product of vectors a and b. 

The absolute velocity vector is defined by 

U' (r) = uo’ - r,U + u’ (r) (1.2) 

The momentum and angular momentum vectors are defined by 

K = fv’dm, Q = {r,v’dm 
m m 

(1.3) 

Substitution of (1.2) into (1.3) gives 
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(1.4) 

We have 

where rc is the position of the centre of mass of the entire system in the Oxyz frame, and 
J, is the matrix of moments of inertia of the system relative to the axes of the Oxyz frame. 
These relations give 

R = rnt.,’ - mr,sO’ + 5 u’ dnz 
me 

The laws governing the variation of momentum and angular momentum yield the equations 

Here F, is a vector representing the external forces acting on the system at 0, and G, is 
the mament of these forces about 0. It is assumed that the forces and moments are applied only 
to the rigid body. Then the inertial force per unit volume of the elastic part of the system 
is balanced by elastic forces -L(u) and internal damping forces, which are approximately 
described by the expressed -Qu'. By (1.21, 

where P 6-1 is the density of the elastic part of the system and f, (4 is a differential 
vector operator representing the elastic forces, whose form depends on that of the elastic 
elements. In particular, for a flexible beam experiencing plane bending 

L(u)=-&E1(2)+$ 

where EI(s) is the flexural rigidity and x coordinate reckoned along the beam. 
Multiplying the first equation of (1.5) on the left by %'T, the second by B'T, and 

Eq.Cl.6) by u'r and then adding all three equations, we obtain the law governing the overall 
mechanical energy of the system: 

The bracketed expression is the kinetic energy T. On the other hand, by (1.21, 

T = "/z I( uo’ - r,kY _t u’)T (u,’ - r,8’ + u’) dm 
m 

Evaluating the integral with respect to the mass of the rigid body, we can write 

T = l/Zmrv~TvoV + l/zO~TI,,B’ + mrv~TO*‘r, Jr 

11~ it (vi - r,B’ + u’)T (vg’ - r,B’ + u’) dm 
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where J,. is the matrix of moments of inertia of the rigid body relative to the frame OXYZ, 

and rro the radius-vector of the centre of mass of the rigid body in the frame oxyz. 

The overall mechanical energy of the system is 

V’ = ljarnrr.$~v~ + l/aV’J,,B’ + m,v~Te*‘r,, + 

Liz I (vi - r.$’ + u’)* (vi - r,W + u‘) dm + ‘ia j uTL (u) dS 
e 

(1.8). 

By (1.71, 

V” = vbTFo + B’W, - 1 u'=Qu'dS (1% 
% 

System (1.5) and (1.6) consists of ordinary differential equations and a partial dif- 

ferential equation (since L(U) is a partial differential operator). This system will now be 
replaced by an equivalent infinite system of ordinary differential equations. Define a trans- 

formation 
U, (r, t) = a?, (r) q,, (t), n = 1, 2, . . ., N (1.10) 

where n is the number of the elastic element, m,,(r) is a (3 x co) -matrix of normalized 
admissible functions satisfying orthogonality conditions, and g*(t) is an infinite vector 

of generalized "elastic" coordinates. Substituting (1.10) into Eqs.fl.5) and (1.6) gives 111 

mu,” - mr,,%” + PTq” = F, jl.21)* 
1,,8” + mrego” + HTq” = G, 

Pv,” + HO” + q” + Rq’ f Q%q = 0 

P = [P,T,. . ., l’s=]*, H = [If,*, . . ., H$]T, 83 = diag[S2,2, . . ., ONa], 
R = diag[R,,...,RN] 

where P,, H, are the matrices of influence 
frequencies of the elastic elements (assuming 
of natural damping coefficients. 

As admissible functions one can take the 

H,* = S r,@_dm 

R, = 1 $,*QC+,dE,,> 0 
E’ n 

coefficients, 8, is the matrix of natural 
the rigid body to be fixed), R, the matrix 

eigenfunctions obtained by solving the boundary- . . ~. 
value problem with fixed rigid body /l-5/, i.e., the equation p (r)u-’ f L(u) = 0. 

If the functions CD,(r) form a complete system, it follows from Parseval's theorem /l/ 
that 

PTP = m,E,, HTP = merec*, HTH = I, (1.12) 

where the index e refers to the elastic body, E, = diagilll?, r,, is the vector of the centre 
of mass of the elastic part of the system in the Oxys frame, and J# is the matrix of moments 
of inertia of the elastic part of the system in the OxYz frame. 

Multiplying the first equation of system (1.11) on the left by %'T, the second by 
8'r, and the third by q’T and then adding the resulting equations, we obtain the law govern- 
ing the overall energy: 

V” = $F,, + e‘T& - q’TRq’ 

In view of (1.12), we can write 

(1.13) 

2V' = m,v~TvTu,’ + B’* J,,B’ + 2mrv~T0*‘rlo + qTQ*q + 
(Pv; + HB’ + q’)* (Pv,’ + HO’ + q) 

(1.14) 

Eqs.(l.S) and (1.11) may be considerably simplified if the Ozyz frane is aligned with 
the principal central axes of the system in the normal state. 

2. Observabitity . Suppose tht measuring devices (sensors) are placed on the rigid body 
of our mechanical system, producing a vector of output signals 

y = C WWI" (2.1) 
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where the inverse matrix C-l exists. To analyse the observability of system (1.111, (2.1)‘ 
we use the criterion according to which a system is observable if and only if the only sol- 
ution compatible with output signals zero is the trivial solution. Now, if 0 sz C WBrJr, 
then [vW’]T z [v*TB’T]T G [v”TB”T]T e 0. Using these identifies, we can write the system as 

PTq” = 0, HTq” = 0, q” + Rq’ -j- saqq 2: 0 (2.2) 

This equation is equivalent to an infinite system of oscillators. In cases of practical 
importance these oscillators are weakly damped and their characteristic equations have complex 
roots. Let us assume that there are no multiple roots. This is the case, at least, when the 
matrix P has no multiple frequencies and either R=O or R is a diagonal matrix. Then 
the solution of the last equation in (2.2) is an infinite sequence of linearly independent 
functions, forming the vector q. The coordinates of the vector q*’ are also linearly indepen- 
dent. The first two equations in system (2.2) are equivalent to a system of six homogeneous 
algebraic equations. Since the coordinates of Q'* are linearly independent, it follows that 
if not all the elements of the corresponding rows of the matrices PT and BT vanish, each 
of the six equations is possible only if q s 0. This implies the following observability 
criterion. 

CritQY'iOn i'. For weakly damped elastic elements, if the matrix 8 has no multiple 
frequencies and R = 0 or R = diag, the only possible non-observable coordinates are those 
for which the corresponding rows of P and H vanish simultaneously. If at least one element of 
these rows does not vanish, the corresponding coordinate is observable. 

A special case of this criterion was established in /2/. 
Now suppose that the third equation in (2.2) has equal roots, totalling S pairs. This is 

possible if the matrix D has s equal frequencies. In that case one has the following 

Criterion 2. If the thira equation in (2.2) has equal roots, totalling s pairs, then the 
corresponding coordinates of the vector q are observable if and only if 

rank[P,H,],,, =a (2.3) 

where Pi and H, are the submatrices of P and H corresponding to the coordinates of 
with multiple roots. In this case s<B, because the matrix lP,&l in this system ",,s 
six columns, so its rank cannot exceed six. If there are several sets of multiple roots, 
formula (2.3) will be used to check each set separately for observability. 

Criterion, 1 was etablished above for a system more general than those considered in /3, 
4/ and of a rather different form. It can be shown that these criteria are equivalent. 

Condition (2.3) is also valid in the case of multiplicity equal to unity. Let i denote 
the index of the coordinate in question. Then for an observable coordinate 

rank[P,R,]=rank [PiHi] [PiHilT = rank[PiHiJT[P,HiJ = 1 

Combining these equalities for i==i,z,..., we can write the observability conditions 

which generalize the criteria of /3, 4/. Criterion 1 is simpler than (2.4), since it requires 
no mathematical operations. 

It can be shown that if the system is controllable without allowing for elasticity, the 
conditions for controllability, allowing for elasticity, are precisely the same as the con- 
ditions for observability. 

3. Equations of the controtter. Let us assume that the sensors and actuating mechanisms 
are situated on the rigid body. The operation of the actuators is described by the equations 

PO' + d@ = f (is P. 4 .% 4 (3.1) 

G, f BG = tp (g, P, d, s, wf 

Here a,#l are positive definite matrices characterizing the time constants of the actuators, 

and f(v) and cp(.) are odd functions describing the non-linearities of the actuators and of 
the control arguments: it is assumed that f(O,O,O.O,O) = rp (O,O,O,O,O) = 0; g,p, d,s are 
vectors representing the output signals of the sensors: 

61 + yg = 9 (vo), P’ + SP = 0 (b-) (3.2) 

d + nd = x(e), a' + es = 6 W) 



where 9 (v0)r 0 h3*)7 x (et, g (e? are odd vector-valued functions characterizing the non-lin- 

earities of the sensors, q(O) = w (0) = x(O) = c(O) = 0, y,6, q, e are positive definite matrices 

describing the time constants of the sensors, and w is the state vector of a compensator, 

defined by the equation 
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w' = Fw f K,g + Kap + K,d 3_ Kls (3.3) 

Here F, K,, . . ., K, are constant matrices. 
The functions f, q,$, w, x, c are assumed to be continuous and such that the set of Eqs. 

(1.111, (3.1)-(3.3) has a unique solution. 

4, stabitity of motion. If m,>O, J,,>O, the sum of the first three terms on the 
right of (1.14) is a positive definite function of the coordinates of the vectors vi,@+, as 

a quadratic constituent of the kinetic energy of the body. If the elastic elements are 

attached to the rigid body as stipulated above, qTWq is a positive definite function of q. 
We can therefore state that if m,> 0, Jr,> 0 then V’ as determined by (1.14) is a 

positive definite function of the coordinates of system (1.11). This is no longer true if 

m, = 0 and/or J,, = 0. 
In order to conclude that the functional (1.8) is positive definite, it will suffice to 

show that its density is positive definite 16, 7/. To that end, we attach a reference frame 
to the n-th elastic element in its undeformed state, say Ox,,y,,z,,, chosen in such a way that 
elastic displacements along the axes are independent. By Rayleigh's relation for the potential 
energy of the elastic forces, we can write /6, 7/ 

s u=L(u)dS = s u,TL(u,)dS> 1 p(r)u,T6l&,dS, 
% 4 %I 

% = diag [Q& Q&, Q&l (4-f) 

where Sh, Gyr PI, are the least eigenvalues corresponding to elastic vibrations along the 
axes 0% Q&B; %, the rigid body being fixed; the column-matrix u, is expressed in terms 
of its projections on the Ot,y,z% axes. The relation between u and 16, is defined by the 
matrix of direction cosines between the frames Oxyr and Oxmy,+ Similar relationships 
hold for all the elastic elements. Thus, using expression (1.8) for the density V,' of the 
functional, we can write 

2Vi = m;;’ [m,.viTvi + B’TJ,,W t_ 2m,v~T9,‘r,b] -j- 

(ViJ.-- r,W + u')r(q, - r,B' + a')+ p-l (r)uTL(u) 
(4.2) 

Using (4.1), we can verify that the density 14.2) is positive definite provided that 

m, > 0, J,, > 0. Under these conditions, therefore, the functional (1.8) is also positive 
definite. 

Together with system (1.51, (1.6) and (1.111, we shall also consider the system with the 
elastic terms neglected: 

for which 

V; = GTFO + WI&, 
2V0’ = mviTv,,* + B’Tl;B’ - 2mq,‘r,,W 

Theorem 1. If there exists a positive definite function 
$3) with the elastic terms neglected, in which the vectors 

0 of, (4.5), and the total derivative V,,’ with respect to 

(4.4) 

(4.5) 

V, for the system (4.31, (3.1)- 

vo 9 * e occur only in the term 
time along trajectories of . 

system (4.3), (3-H-(3.3) is negative definite, 
f1.6), (3.1)-(3.3) or system (1.111, 

then the equilibrium state of system (1.5), 

elastic terms 
(3.1)-(3.31, which describe the system including the 

, are asymptotically stable provided that &,>U, f,,>O. 

Proof for system (1.51, (1.61, (3.11-13.31. Considering V,, replace the term V,' of 
(4.5) by V' as in (1.8); 
(3.1)-(3.3). 

this gives a positive definite functional V for system 11.51, (1.6), 
The functional V 

and vanishes at v,, = v,,* = 
is negative definite (to see this, compare (1.9) and (4.4)) 

@=8'=0, ii=o. If ,PrO, then 
this, as follows from Bqs.(l.S), 

v,,** -18" E 0, ri z ti' 3 0, and 
(1.61, corresponds to a fixed position of the rigid body, 

relative to which the elastic part is at rest. 
the only point at which 

If the elastic elements are rigidly attached, 

point. 
Pmsi?o is the point at which ,u= u'=O, i.e., the equilibrium 

It then follows from a theorem of /7/ that the equilibrium state of our system is 
indeed asymptotically stable. 

Proof for system (1.111, (3.1)-(3.3). Considering VI, replace the term V,’ of (4.5) 
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by V' as in (1.14); this gives a positive definite function V’ for this system. The function 
V for this system, The function V’ of (1.13) is negative definite in this case. If the 
elastic elements involve natural damping, the proof proceeds as before. If the weak damping 
is negligible, we must set R =0 in the last equation of (1.11) and in (1.13). 

Under what conditions is the system asymptotically stable? Comparing I"' (1.13) and I/,” 
(4.4), with due consideration of (3.1)-(3.3), we see that v's0 if F. =G, = uO = uO' =-= 0 = 
0' I- 0, so that u" = 8" = 0. Substitution of these identities into Eq.cl.11) gives system 
(2.2) with R =O. Hence it follows that the system will have no complete trajectories other 
than the trivial one with V’s 0, if and only if it is observable. Hence, by the Barbashin- 
Krasovskii Theorem, the trivial solution of system (l.ll), (3.1)-(3.3) is asymptotically 
stable. 

Theorem 2. If there exists a positive definite function V. for system (4.3), (3.1)- 
(3.31, with the elastic terms neglected, in which the vectors z+,', 0' occur only in the term 
V,' of (4.5), and the total derivative V,' with respect to time along the trajectories of 
the system is negative definite, and moreover the set Vo’ = 0 for the system including 
elasticity contains no complete trajectories other than the point zero, then the equilibrium 
state of system (1.51, (1.61, (3.1)-(3.3) or system fi.111, (3.1)-(3.3) with elasticity 
included is asymptotically stable provided that m, > 0, J,, > 0. 

The proof is similar to that of Theorem 1. 

Remark 1. The conditions of the theorems will be satisfied if the system with elastic 
terms ignored is asymptotically stable. 

Remark 2. The statement of the theorem is unchanged if the operation of the sensors and/ 
or actuators is governed by equations other than (3.1)-(3.3), provided that these equations 
satisfy the conditions of Lyapunov's second method. 

Remark 3. Whether the system is stable or unstable does not depend on the position of 
the frame OZYZ. However, the relationship between the terms in V,' of (4.5) does depend 
on the choice of frame. Thus our condition on the structure of the function %g is not too 
restrictive. 

Remark 4. Our observability and stability results are easily extended to discrete models 
of elastic systems, irrespective of the specific method of discretization adopted. 

Remark 5. Synthesis of control systems utilizing these theorems yields control systems 
that are more robust relative to the parameters of the elastic elements, and also relative 
to the inertia-mass characteristics of the controlled object. 

In the case of linear systems, the determination of quadratic functions V, and t'~' 
may be formalized through the use of Lyapunov's equation. To do so, one reduces system (4.3), 
(3.1)-(3.3) to Cauchy form X' =.4x (x is the state vector of the system) and tries to find 
functions V, and V,’ in the form V, = xTBx, V,’ = xTCx. Lyapunov's equation is then ATB -I- 
BA = C. The specific structure of the function V, imposes restrictions on the structure 
of the matrix B. Another method for constructing functions Ii, and V,’ will be described 
below, in the context of an example. 

It is striking that application of the above theorems requires no knowledge of a model 
of the system including elasticity. The theorems reduce stability analysis for the solutions 
of systems of infinite order to stability analysis of systems of lower order. A similar 
raute was adopted in /S/, using the root hodograph method, for a regulator of a special form; 
the question was raised there as to whether this simplified approach is applicable to a 
broader class of regulators. Our theorems show that this is indeed the case. 

5. ExumpZe. Synthesis of a dynamic regulator without altowing for elasticity, ensuring 
asymptotic stability of the system with elasticity. We consider the one-dimensional motion 
of a rigid body, where the coordinate 0 and velocity 0' are measurable. The governing 
equations of the controlled object and of the regulator are 

where k,, k,,k,, f are constant coefficients, and R, F, A are constant matrices. For small 
f the variable uO is close to JO&, so that the system is practically astatic. 

We change to the new variables 
ug - f-le = zo, II + F’KB = 5 (5.2) 

(assuming that F is a non-singular matrix). In terms of these variables system (5.1), with 
elastic terms ignored, becomes 



463 

Jo” = k,O’ - (ka + ksf-’ - BF-‘K)B - k,z,, + BE 

270. = -fzo - f-w’, 2’ = Fz Jr F-‘m3’ 

(5.3) 

Multiply the first equation in (5.3) by f)', the second by pO%. and the third by ZTB, 

where p8>0 is a scalar and H is a symmetric matrix: add the results together. This gives 

ZV,, = JtP t_ (k, + ksf-’ - BF-‘E) fi2 + pozog + sTfTz 

V; = -k#* - p&@ -I- zTHFa - (k, + &,f-‘) 8.2, + 6’~~ (HP”‘K - B*f 

If 

k, + k$-’ - J3P’K > 0, p* > 0, H > 0 (5.4) 

then the function VW is positive definite. Sufficient conditions for V; to be negative 
definite are, for example, 

kl>O,f>O, PO>% 2~~f>Iks+fof-‘I 

HF-'K-#=O,HF>O 

(5.5) 

If ifi=/= and Conditions (5.41, (5.5) are satisfied, we are in the situation of Theorem 2 
and so system (5.1) is asymptotically stable. 
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